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Abstract Generally speaking, the highest symmetry of Möbius cyclacene molecule
possesses the C2 symmetry based on the theory of point group according to the previous
works. However, based on the topology principle, the fundamental group of Möbuis
strip is an infinite continuous cyclic group and its border is made up of twice of the
generator. Of course, the Möbius strip-like molecule is associated with a finite discrete
cyclic symmetry group. For the cyclacene isomers constructed by several (n) benzene
rings, these isomers include: the common cylinder Hückel cyclacene (HC-[n]) mole-
cules, the Möbius cyclacene (MC-[n]) molecules by twisting the linear precursor one
time (180◦), and the multi-twisted Möbius strip-like cyclacene (MmC-[n]) molecules
by twisting the linear precursor m times (m × 180◦). The relevant results suggest that
in addition to the point symmetry, there is a new kind of symmetry called the torus
screw rotation (denoted as TSR). In this article, we take the MmC-[n] molecules as
examples to discuss their TSR group and point group symmetry, and the relative sym-
metry adaptive atom sets as well as their atomic orbital (AO) sets. Here, the Cartesian
coordinates is not quite fit for the investigation of these AOs, so it is replaced by either
the torus orthogonal curvilinear coordinates (for MmC-[n] molecule) or the cylinder
orthogonal curvilinear coordinates (for HC-[n] molecule). According to the features
of cyclic group, the character table of the irreducible representation of the TSR group
could be constructed easily. Some other relevant point-group symmetries maybe also
belong to the molecule, so its symmetry maybe called as the torus group symmetry.
For multi-twisted Möbius strip-like molecule, there are some correlations in topology
characteristics.
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1 Introduction

In last century, for the research of the conjugated molecular system and its aromaticity,
chemists began to investigate the characteristics of Möbius strip-like molecules. The-
oretical studies mainly focused on the electron wave functions, topological structure
[1,2], aromaticity, and the selection rule of pericyclic reaction of Möbius strip-like
molecules [3,4]. However, reports on the synthesis of Möbius strip-like molecules
are relative tardiness. In 1982, Walba and co-workers synthesized the first molecu-
lar Möbius strip via high-dilution cyclization of the tris-tetrahydroxy-methylethulene
(THYME) diol ditosylate [5–7]. After entering the new millennium, Herges synthe-
sized the stable Möbius strip-like molecules [8,9]. Because of the topology character
of Möbius strip-like molecules and their possible applications in biomedical field,
Möbius strip-like molecules attracted more and more attention, and great progresses
have been made especially in the synthesis of Möbius strip-like molecules [6,8,9].
Recent years, many theoretical and experimental articles and reviews about Möbius
strip-like molecules have been published [10–15].

Usually, the C2 axis is considered to be the highest symmetry element of Möbuis
molecule with one knot. Based on the topology principle, the fundamental group of
Möbuis strip is an infinite continuous cyclic group and its border is made up of twice
of the generator [16]. Of course, the Möbius strip-like molecule is described by a finite
discrete cyclic symmetry group. This description indicates that further development
of the molecular symmetry theory for these Möbius strip-like molecules is very nec-
essary. When discussing molecular symmetry, we often look for help from the point
group, while the space group (especially the cylinder group) is needed for the study
of macromolecule [17]. However, when we study the symmetry of Möbius strip-like
molecule, a kind of new symmetry was found by us, recently. The related results have
been announced in the format of communication briefly [18]. But, there still some
questions need to expatiate, such as the distribution of atomic orbital (AO) sets and
the character table of irreducible representation in Möbius strip-like molecule. These
aspects will be discussed in this paper detailedly.

Here, we take the linear [n]-polyacene molecule formed by [18]-benzene rings as
an example to pursue the investigation. Its structure is shown in Fig. 1 (omitted the
hydrogen atoms for clarity), and the carbon atoms at the same horizontal line are
labeled by either Ca′, Ca′, Cb′ , or Cb from the top to bottom, respectively. When the
C atoms of the left and right ends overlap to form a spacial structure of [18]-polya-

a

b'

a'

b

Fig. 1 Structure of linear [18]-polyacene molecule. (C74H-40; The C-atoms at the same horizontal line
are labeled by either a, a′, b′, or b from top to bottom, respectively. Hydrogen atoms are omitted for clarity)
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cene ring, it can either be a Hückel [18]-cyclacene (denoted as HC-[18]) or a Möbius
[18]-cyclacene (MC-[18]), after gluing the ends of the molecular plane together with-
out or with twisting 180◦ of the molecular plane as shown in Fig. 1. We can also
obtain Möbius cyclacene molecules with m knots (m ≥ 2), denoted as MmC-[18],
with twisting m times of 180◦. Note that they have the same molecular formula C72H36.

Analyzed by the theory of point group, HC-[n] molecule possesses 4n-order Dnh
symmetry, but the corresponding MC-[n] only has 2-order C2 symmetry. HC-[n] has
a finite n-order cyclic symmetry (Cn point group). By topology principle just men-
tioned, it can be expected that MC-[n] may have a finite 2n-order cyclic symmetry
group and maybe not only limited to the C2 point group. In this paper, we indeed find
out a proper kind of 2n-order cyclic symmetry group, which does not belong to the
point group and may be called the torus screw rotation (TSR) group.

2 Torus screw rotation and torus orthogonal curvilinear coordinates

2.1 The torus screw rotation

In this section, we introduce a new symmetry transformation, namely the TSR. As
well-known, rotation of point group is operated by circling the object around a rota-
tion axis which is through a fixed centre point. For a certain point in the 3-dimensional
space, its image point after any transformation of point group will be fallen in a spher-
ical surface. While the screw rotation of space group is operated by rotating the object
around a fixed line (called screw axis) and accompanied with the translation move-
ment along the screw axis [17]. The image of a certain point obtained by any a screw
rotation transformation will then be fallen in a cylindrical surface around the screw
axis. So, screw rotation is also known as cylinder screw rotation. However, the TSR
transformation is operated by rotating the object around a fixed circle (called base
circle, which is formed by the horizontal middle line doted in Fig. 1 and represented
by the biggest circle in Fig. 2a) and accompanied with rotating around the center of
the base circle (i.e. the origin, O). Because all the points after this transformation are
in the same torus, it is then called torus screw rotation and denoted as TSR. Note that
the cylindrical surface is an open surface, but the torus and spherical surface are closed
with different homeomorphism. The topological characteristics of these surfaces are
different. For Möbius strip-like molecules, they can keep invariant under a certain
TSR, namely the TSR symmetry (Here, we use TSR denoting the torus screw rotation
and TSR denoting the torus screw rotation symmetry group). When the base circle is
reduced to a point (i.e. zero dimension), the TSR will turn into rotation of the point
group and the related torus turn into a spherical surface. When the radius of the base
circle is expanded to infinite (i.e. a one-dimensional line), the TSR will become the
cylindrical screw rotation of space group and the related torus will turn into a cylinder.
So, in general, the base circle of TSR is a finite-size circle. Of course, it should be
noted that the torus herein is not in homeomorphous with neither the sphere of point
group nor the cylinder of one-dimensional space group, so they should have different
mathematical characteristics. Perhaps TSR can be used as an effective tool to deal
with the symmetry of the fractal system [19]. If the movement of planet around star is
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(A) (B)

Fig. 2 Torus orthogonal curvilinear coordinate system

regarded as the ordinary rotation, the motion of satellite of the planet is corresponding
to the TSR.

There are two kinds of revolving movement in the TSR: (1) rounding the center
of basis circle with the longer revolving radius; (2) rounding the edge of basis circle
with the shorter radius. The former is in connected with the intrinsic symmetric char-
acter of the glued skeleton structure of Fig. 1, and the latter with the Möbius strip-like
symmetric character because it is glued after twisting the skeleton of Fig. 1. To con-
struct an MmC-[n] structure, certain boundary conditions should be satisfied to make
the carbon bonds between the overlap of the right and left sides of Fig. 1. So, these
two kinds of rotations may be not completely independent with each other. That is,
when the movement is circling the center of the basis circle once (360◦), it should
also accompany by circling the circumference of the basis circle along the twisted
edge an integer (including zero) or half-integer times. If it is an integer (including
zero) times twisting rotation, the C atoms of right and left sides in Fig. 1 are matched
(Ca′ to Ca′ , and Cb′ to Cb′ ) and to form the loop. Such system possesses an 18-order
cyclic group. When the integral is zero, such system is Hückel [18]-cyclacene (HC-
[18]). If it is a half-integral times twist rotation, the C atoms of right and left sides in
Fig. 1 are overlapped by cross-link (Ca′ to Cb′ ; Cb′ to Ca′) and to form the Möbius
strip. Such system possesses a 36 order cyclic group (TSR). When this half-integral
is 1/2, such system is Möbius [18]-cyclacene (MC-[18]). For these systems, though
the order of the associated symmetry group may be bigger, we mainly focus on the
latter here. The twisting (either integral or half-integral times) may be clockwise or
anticlockwise and could be labeled as positive or negative, respectively. Twisting the
same times but along different directions, the pair molecules obtained ought to be the
optical enantiomers with each other. The torus groups contain not only theTSR cyclic
groups but also some other point groups.
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2.2 The torus curvilinear coordinates

For Möbuis strip-like molecules, using the Cartesian coordinates to deal with the TSR
is inconvenience. We need to introduce the torus orthogonal curvilinear coordinates.
As shown in Fig. 2a, point O is the origin of the XYZ Cartesian coordinates. The
base circle (the biggest circle in Fig. 2a) is drawn in the XY plane and its radius is R
(OO′). For an arbitrary point P (e.g. the position of a certain atom) in the 3D Cartesian
coordinates with the coordinate values (X, Y, Z), its corresponding torus orthogonal
coordinate values (L, α, β) may be defined as follows: making a vertical line from the
P point to the XY plane intersecting at the T point, and then extension the OT line
until intersecting with the base circle at the O′ point. Connecting points O′ and P, and
the length of O′P segment is set the L value in the torus orthogonal coordinates. The
other two values α and β are determined by the angles XOO′ and PO′O, respectively.
Because the surface defined by such a constant L-coordinate value in such a coordi-
nates is a torus, it is called torus orthogonal coordinates. For any point P (the position
of a certain atom) in the 3D space, three torus coordinate surfaces will be orthogonal
in the P-neighborhood with each other. Similarly, in the P-neighborhood the torus
coordinate curves will be orthogonal with each other, too. So the torus coordinates
(L,α, β) ought to be an orthogonal coordinate system.

As for a certain point P (denoting an atom), its Cartesian coordinates
values (X, Y, Z) are adopted by the Gaussian software. When using the torus orthogo-
nal curvilinear coordinates, it is unchanged for s-AO, but the p-AOs will be changed to
pL-, pα-, pβ-AOs from pX-, pY-, pZ-AOs. Where pL-, pα-, pβ-AOs are the tangential
direction(l, a, b) components of atom orbital in connection with the torus orthogo-
nal curvilinear coordinates (L, α, β) curves, respectively. The LCAO coefficients of
pL-, pα-, pβ-AOs can be transformed from that of px-, py, pz-(or pX-, pY-, pZ-)AOs
by means of the coordinates system rotational transformation (from x, y, z system to
L, α, β system) relationship.

2.3 The torus screw rotation symmetry

The TSR, is a symmetrical operation that rotates the object around both the base
circle centre (Z axis) and the circumference of base circle simultaneously. Surely,
the coordinate values of α and β change, while the value of L is unchanged in such
transformation. So after the TSR, the image point must be kept on the torus surface
with the fixed value L. For example, point P(L, α, β) after the TSR, its image point is
P′(L, α ′, β ′) with the L value unchanged. Such a transformation is denoted as: TSR
(L, � α, � β), where:

� α = α ′ − α and � β = β ′ − β (1)

Usually, point P denotes a certain atom, so its image point P′ should be another
atom which is the same as P. Generally, after certain times of transformations, we
can expect that the image will reach the source P. This is a necessary condition to
determine whether there is a symmetrical transformation in a molecule. Therefore,
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the variations �α and �β caused by TSR are related to each other and governed by
the molecular structure. On one hand, a complete α rotation is the sum of steps with
�α = 2π/n per time. On the other hand, the companion β rotation will be n�β = mπ

through n times such TSR, where m must be the integral number. So we can obtain:

�α = 2π and �β = mπ/n (2)

Then

�α/�β = 2/m (3)

Where, m corresponds also to the times of twist along the horizontal direction in Fig. 1.
For the even number m, when α angle rotates with 2π, the atom P will be return to the
original position. However, for the odd number m, when α angle rotates with 2π, the
atom P can not be return to its original position, and only when α angle rotates with
4π, the atom P can return to its original position. Of course, n is independent with the
times of twist, and it is one of the intrinsic characters of such molecules.

Taking the molecule MC-[18] as an example: where n = 18 and �α = 2π/18 or
�α = 20◦, while m = 1 and �β = π/18 or 10◦, the corresponding transformation is:

{TSR (L,�α,�β)} = {TSR
(
L, 20◦, 10◦)} (4)

So the TSR of the MC-[18] can yield a 36-order cyclic group:

TSR = [{TSR (L,�α,�β)} j ; j = 0, 1, 2, . . . , 35] (5)

Atoms in a molecule possessing such symmetry may form a set composed of 36 sym-
metrically equivalent atoms through this transformation, namely a symmetry adaptive
(SA) atom set as shown in Fig. 3. The interval of rotation α is 720◦ (4π).

Fig. 3 MC-[18] molecule
belongs to the 36-order TSR
group and its possible
SA-atomic set. For various
SA-atom set, the Z-axis and XY
plane are the same, but the
directions of the X-,Y-axes and
the L-value may be somewhat
varying
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In addition, when replace � β by −� β, we can get a similar SA atom set, and it
constructs the enantiomer of that in Fig. 3. The relative TSR group will also be with
36-order.

The s-AOs in the SA atom set can form the SALC-AOs about the {TSR(L, 20◦, 10◦)}
transformation. The p-AOs can not conveniently be analyzed by using the Cartesian
coordinates, but can be done by using the torus coordinates. The p-AOs component
(px-, py-, pz-AOs) should be replaced and analyzed by the tangential components of
the torus coordinates (l, a, b), namely the pL-, pα-, and pβ-AOs. For the 36 atoms in
Fig. 3, by using only one of the px-AOs, py-AOs or pz-AOs, we can not construct the
SALC-AOs for such TSR group. However, by using one of the pL-AOs, pα-AOs or
pβ-AOs, we can do so. All the SALC-AOs belonging to the same irreducible repre-
sentation can be combined into one MO. The irreducible representation of such MO
may be pure but including different components of SA-AO sets.

3 Symmetry of Hückel and Möbius [18]-cyclacene molecule

3.1 Symmetry of Hückel-[18]-cyclacene molecule

For comparison, before we investigate the Möbius-molecule, we primarily consider
the Hückel-molecule, HC-[18], the cylindrical orthogonal curvilinear coordinates will
be applied.

3.1.1 The HC-[18] molecule in the cylindrical orthogonal curvilinear coordinates

For the HC-[18], its geometrical conformation can be seen from Fig. 4, where the
Cartesian coordinate system is consistent with the requirement of Gaussian program.
In Fig. 4, all the centers of the benzene rings can be connected to form the base circle,
and all atoms are almost in the same cylindrical surface. If the torus orthogonal cur-
vilinear coordinates is considered, the β-coordinate ought to keep the constant (90◦
or π/2), the L-coordinate is the same as that of the Z-axis, and the α-coordinate may

Fig. 4 Geomertical skeleton of
the HC-[18] molecule and the
cylindrical coordinate system
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take any value in the whole 360◦ range. According to the cylindrical orthogonal cur-
vilinear coordinates, the atom P in the HC-[18] can be denoted as (Z, r , α) shown
in Fig. 4. The foot O′ of the perpendicular line PO′ ought to be on the base circle,
the Z-coordinate value of P point will be the length of the PO′ segment, the value
of r is the length of OO′ segment which approximately equals to the radius of the
base circle, and the value of α is the XOO′ angle. In such cylindrical coordinates, the
s-AO and pZ-AO of the LCAO-MO are the same as in the Cartesian ones, but the pX-
and pY-AO should be replaced by pr- and pα-AO which are the components of p-AO
along the two orthogonal directions. That is to say, pr- and pα-AO are the components
of p-AO along the cylindrical coordinate surface normal and tangential directions
(pN- and pT-AO), respectively.

3.1.2 Symmetries of HC-[18] molecule by the point groups D18h and C18

HC-[18] molecule has D18h point group symmetry which is a 72-order group. The
irreducible representations and characters of D18h point group can be obtained by
the ordinary method of group theory. There are 72 symmetry transformations as the
elements of the group:

�

E, 2
�

C
j
18( j =1, 2, . . . , 8),

�

C2, 9
�

C′
2, 9

�

C ′′
2 ,

�

P, 2
�

S
j
18( j =1, 2, . . . , 8),

�

Mh, 9
�

Md, 9
�

Mv

The relative irreducible representations are provided with 8 one-dimensional (1D) and
16 two-dimensional (2D) representations as follows:

1D: A1g, A2g, B1g, B2g, A1u, A2u, B1u, B2u
2D: Eρ g, Eρ u(ρ = 1,2, . . . , 8)

Now let’s analyze the HC-[18] molecule (C72H36) by D18h point group. The atoms
included in HC-[18] can be classified as follows (see Fig. 1): the C-set (contains the Ca
and Cb atoms), the C′-set (contains Ca′ and Cb′ atoms) and the H-set (contains the all
hydrogen atoms). All these three sets are the symmetry adapted (SA) atom sets for the
D18h point group, and each contains 36 atoms. Where, each SA-atom set constructs
two circles each formed by 18 atoms distributed around the same 18-fold rotation axis
of a cylinder. For the above three sets, the associated cylinders maybe very close to
each other, however, they are not completely identical.

On the other hand, one atom may contain several AOs, so there are more SA-AO
sets. Each SA-AO set may construct 36 SALC-AOs, which may be obtained by means
of the common group theory method, and the relative irreducible representations may
also be obtained. For the s-, pz- and pN-AO of C atoms (Ca and Cb in Fig. 1) and the
s-AO of H atoms, there are 36 SALC-AOs included in each kind of AO, the relative
representation is as follows:

�(1)=A1g ⊕ B2g ⊕ A2u ⊕ B1u ⊕ E1g ⊕ E2g ⊕ E3g ⊕ E4g ⊕ E5g ⊕ E6g ⊕ E7g ⊕ E8g

⊕E1u ⊕ E2u ⊕ E3u ⊕ E4u ⊕ E5u ⊕ E6u ⊕ E7u ⊕ E8u (6-1)

For pT-AO of C-carbon atoms (Ca and Cb in Fig. 1), which include 36 SALC-AOs,
the relative representation is as follows:
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�(2)= A2g ⊕ B1g ⊕ A1u ⊕ B2u ⊕ E1g ⊕ E2g ⊕ E3g ⊕ E4g ⊕ E5g ⊕ E6g ⊕ E7g ⊕ E8g

⊕E1u ⊕ E2u ⊕ E3u ⊕ E4u ⊕ E5u ⊕ E6u ⊕ E7u ⊕ E8u (6-2)

For s-, pZ-, pN-AO of C′-carbon atoms (Ca′ and Cb′ in Fig. 1), there are 36 SALC-AOs
in each kind of AO, the relative representation is as follows:

�(3)= A1g ⊕ B1g ⊕ A2u ⊕ B2u ⊕ E1g ⊕ E2g ⊕ E3g ⊕ E4g ⊕ E5g ⊕ E6g ⊕ E7g ⊕ E8g

⊕E1u ⊕ E2u ⊕ E3u ⊕ E4u ⊕ E5u ⊕ E6u ⊕ E7u ⊕ E8u (6-3)

For pT-AO of C′-carbon atoms (Ca′ and Cb′ in Fig. 1), which include 36 SALC-AOs,
the relative representation is as follows:

�(4)= A2g ⊕ B2g ⊕ A1u ⊕ B1u ⊕ E1g ⊕ E2g ⊕ E3g ⊕ E4g ⊕ E5g ⊕ E6g ⊕ E7g ⊕ E8g

⊕E1u ⊕ E2u ⊕ E3u ⊕ E4u ⊕ E5u ⊕ E6u ⊕ E7u ⊕ E8u (6-4)

Here we use the cylinder orthogonal curvilinear coordinates, so the px- and py-AO
are replaced by pN- and pT-AO. Because, the SALC-AO can not be constructed by
px- or py-AO alone. In addition, we can see that the 16 2D irreducible representa-
tions are all included in the formulas (6-1)–(6-4), while only 4 of the 8 1D irreducible
representations are included in one of these formulas, but each kind of the 1D irreduc-
ible representation may be in various SALC-AO sets. Although one MO can belong
to a pure irreducible representation, it may include various SA-AO set components.
According to the LCAO-MO theory, a MO-�η can be denoted as:

�η =
∑

J

∑

i

aη (J, i) φ (J, i) (7-1)

where the φ(J, i) is the i-th AO of atom J, and the LCAO coefficient related to the AO
φ(J, i) in MO-�η will be the aη(J, i). Now we replace the sum for atom (J) and the
AO (i) in atom by the sum for SA-AO set and the AO in SA-AO set, and the Eq. (7-1)
will be:

�η =
∑

ϑ

∑

i

aη(ϑ, i)φ(ϑ, i) (7-2)

where the φ(ϑ, i) is the i-th AO of ϑ-th SA-AO set, and its corresponding LCAO
coefficient in MO-�η is aη(ϑ, i). In MO-�η,the composition of ϑ′-th SA-AO set is:

Xη(ϑ
′) =

∑

i

aη(ϑ
′, i)a∗

η(ϑ
′, i)

/
∑

ϑ

∑

i

aη(ϑ, i)a∗
η(ϑ, i) (8)

where a and a* are the complex conjugate numbers with each other. If involving sev-
eral SA-AO sets (ϑ ′), the sum for relevant SA-AO sets would be necessary and we
can obtain it by changing the numerator of formula (8).
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However, we are more interested in the symmetry of the cyclic group. In
HC-[18], the relevant cyclic group is the 18-order rotation point group, C18, which is
the sub-group of D18h. By using the real representation, there are two 1D and eight 2D
representations. In HC-[18] molecule, there are 36 H atoms and 72 C atoms. According
to point group C18, there are six SA-atom sets: four SA C-atom sets (each set including
18 C atoms) and two SA H-atom sets (each set including 18 H atoms). The s-, pz-, pN-
and pT-AOs of these atoms will combine to form the SA-AO set composing of 18
AOs, respectively. It should be pointed out that we must use the cylindrical orthogonal
curvilinear coordinates instead of the Cartesian coordinates. These SA-AO sets can
construct the relevant SALC-AOs, and further combine them into the SALC-AO MOs.
For all these SA-AO sets in HC-[18] molecule, the representations of these SALC-AO
MOs can be denoted as:

� = A ⊕ B ⊕ E1 ⊕ E2 ⊕ E3 ⊕ E4 ⊕ E5 ⊕ E6 ⊕ E7 ⊕ E8 (9)

It is the same for all these SA-AO sets no matter that they combine to form σ- or
π-MO. For example, the π-MOs are composed mainly by the SALC-pNAO, while the
σ-MOs are composed mainly by the other SALC-AOs.

3.1.3 The symmetry character of MO in HC-[18]

The molecular formula of HC-[18] is C72H36. There are 108 atoms calculated by
the Gaussian program at the STO3G/HF level. The MO serial number (J) is defined
according to the order of the size of the energy gap between the MO and the frontier
MO, and it is negative for OMO and the positive for VMO. Each of these MOs would
belong to a certain pure irreducible representation of the D18h point group [20], how-
ever the Gaussian calculation program sometime does not provide the direct result
for the all MOs in connection to D18h. But by means of projection operator [20] or
the fuzzy symmetry theorem [21], we could get the various irreducible representation
components of D18h for each MO. The results suggest that each MO approximately
belongs to a pure irreducible representation of the D18h point group. However, such
MO with pure irreducible representation may include various SA-AO set components,
which can obtained by using Eq. (8). As shown in Fig. 5b, it exhibits the MOs near
the frontier MO, which are the π-MOs and are composed by SALC 2pN-AO set of
C atoms. The other SALC-AO sets will be mainly combined to compose the σ-MOs,
but the π-MOs far away the frontier MO may include other SALC-AO components
and are not composed by pure SALC 2pN-AO.

For the π-MOs near the nonbonding energy level, they posses almost pure SALC-
AO and their irreducible representations are almost pure too. The calculated HOMO
of HC-[18] molecule is shown in Fig. 6.

3.2 Symmetry of Möbius-[18]-cyclacene molecule

The Möbius-[18]-cyclacene (MC-[18]) molecule can be obtained by twisting the
HC-[18] molecule by 180◦. Discussing the Möbius molecule usually involves the
TSR symmetry and needs the torus orthogonal curvilinear coordinate system.
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Fig. 5 The SALC-AO
components of the near frontier
MOs in HC-[18] (at the
STO3G/HF level)
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Fig. 6 The view of HOMO of HC-[18] (at STO3G/HF level). A0 Near top view, A1 near side view

3.2.1 The MC-[18] molecule and torus orthogonal curvilinear coordinates

The geometric skeleton of MC-[18] molecule is formed by cutting and twisting the
[18]-polyance molecule (see Fig. 1) by 180◦ and gluing its two ends to form the cycle
as shown in Fig. 7. Here the atomic distances are taken the same as that of the optimized
HC-[18] molecule.

As shown in Fig. 7, the tiny dot in the centre of benzene rings may be linked to
form the base circle. The XY plane is placed on the paper plane and the Z-axis is per-
pendicular to the XY plane. The X-axis is passing through two C and two H atoms of
the MC-[18] molecule’s right side, and is perpendicularly passing through the center
of the benzene ring at the left side of MC-[18] molecule. The previously research has
well accepted that the C2 axis of MC-[18] is just the X-axis without any other point
symmetry.
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Fig. 7 Geometrical skeleton of
the MC-[18]

Y

X

The molecular formula of MC-[18] and HC-[18] are the same, C72H36, but the
symmetry of the two isomers would be very different. According to the point group
theory, HC-[18] possesses the symmetry of D18h point group, but MC-[18] only has C2
point group. On the other hand, as we have pointed out, MC-[18] should possess the
symmetry of 36-order cyclic group, TSR, as shown in Eq. (5), and the torus orthogonal
curvilinear coordinates is prior for the investigation. In this coordinate system, the TSR
elements in MC-[18] molecules are as follows:{TSR (L, 20◦, 10◦)} j ; j = 0, 1, 2,

. . . , 35. In this TSR group, there are three SA-atom sets in the MC-[18] molecule: 36
C (Ca + Cb) atoms, 36 C′(Ca′ + Cb′) atoms and 36 H atoms, respectively. Any atom
in MC-[18] molecule under the {TSR (L, 20◦, 10◦)} j can find another identical atom
belonged to the same SA-atom set in the proper location. The L-coordinate values of
the atoms in identical SA-atom set are the same. The 36 atoms in various SA-atom
sets are all arranged in the way shown in Fig. 3. The XY planes of different SA-atom
sets would be parallel with each other, but the L-coordinate values of the atoms in
various SA-atom set may be somewhat different.

3.2.2 The MC-[18] molecule with the TSR symmetry

First of all, we analyze the TSR symmetry of MC-[18] molecule, which is a
36-order cyclic group, TSR(18/1). There are 36 group elements (the symmetry trans-
formations): TSR(18/1; j) ( j = 0, 1, 2, . . . , 35). Here the group element is TSR:
TSR(18/1; j) = TSR (L, 20 j◦, 10 j◦), where the ‘18’ in bracket denotes the inherent
order of the rotation without the twisted states, and the ‘1’ following the‘/’denotes the
twist time (i.e. 180◦ for each time). As j = 0, TSR(18/1; 0) is the unit element. The
TSR(18/1; j) and TSR(18/1; 36- j) are the inverse elements with each other. According
to the ordinary group theory [20], the character table of 36-order TSR cyclic group
in MC-[18] molecule is isomorphism with that of the C36 point group. The character
table of the related complex representation is shown in Table 1, similarly. Where, the
Eρ stands for two conjugate 1D complex representations, or one 2D real representation
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Table 1 The table of character for 36-order TSR cyclic group

Irreducible
representation

Symmetry transformation

TSR(18/1;0) TSR(18/1; j) TSR(18/1;18) TSR(18/1; j)

j = 0 j = 1, 2, . . . , 17 j = 18 j = 19, 20, . . . , 35

A 1 1 1 1

B 1 (−1) j −1 (−1) j

Eρ (ρ = 1–17) 1 ερ j = exp (2πρ j i/36) (−1)
ρ ερ j = exp (2πρ j i/36)

1 ε− ρ j = exp (−2πρ j i/36) (−1)
ρ ε− ρ j = exp (−2πρ j i/36)

by combining the two above. As shown in Table 1, there are thirty-six 1D (complex)
representations; meanwhile they may be treated as the real representations including
two 1D and seventeen 2D representations.

There are three SA-atom sets in the MC-[18] molecule of the TSR symmetry group.
The s-AOs of these atoms may compose the related SA-AOs set, and each set includes
36 s-AOs. These s-AOs can be linear combined to form 36 independent SALC-AOs,
and the representations associated with this TSR group are as follows:

� = A ⊕ B ⊕ E1 ⊕ E2 ⊕ E3 ⊕ E4 ⊕ E5 ⊕ E6 ⊕ E7 ⊕ E8 ⊕ E9

⊕E10 ⊕ E11 ⊕ E12 ⊕ E13 ⊕ E14 ⊕ E15 ⊕ E16 ⊕ E17 (10)

Because the form of pX-, pY- or pZ-AOs as adopted in Gaussian software can
not conveniently compose the SALC-AO for MC-[18], it is necessary that the
p-AOs and sequentially the LCAO-coefficients of pX-, pY-, pZ-AOs are transformed
to pL-, pα-, pβ-AOs of the torus orthogonal curvilinear coordinates. Such transfor-
mation relationship can be obtained by means of the vector rotation transformation
relationship between the (x, y, z)- and the (l, a, b)-coordinates (see Fig. 2a). The
pL-, pα-, pβ-AOs of each SA-atom set may be grouped to form their own SA-AO set,
respectively. And every SA-AO set can be linear combined to form 36 independent
SALC-AOs, which belong to the representation of TSR group (see Table 1) and can
be denoted as Eq. (10). The SALC-AOs belonging to the same irreducible representa-
tion (but including various SA-AO sets) can further combine to form the SALC-MO.
Calculated by Gaussian program at STO-3G/HF level, for the MC-[18] molecule, the
geometrical data in the Cartesian coordinates have been calculated with the single
point (SP) method and transferred into the torus orthogonal curvilinear coordinates
for further analyzing the symmetry of MO in MC-[18]. Similar as the method in
Sect. 3.1.3, the various SALC-AO components of the near front MO in MC-[18] can
be obtained, and the related results are shown in Fig. 8.

Note that for any given MO (namely, J value is fixed), a pure irreducible representa-
tion will be associated, but it may include various SALC-AO components. As shown
in Fig. 8, for MOs near the frontier MO in MC-[18], they are mainly composed by the
p-AOs of C atoms, and the all components of the SALC-pL-, pα-, and pβ-AO, have
some contribution, but the SALC-pL-AO contributes a little more.

123



J Math Chem (2012) 50:2248–2271 2261

Fig. 8 The SALC-AO
components of the near front
MOs included in MC-[18]
(at the STO3G/HF level)
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Fig. 9 The view of HOMO of MC-[18] (at STO3G/HF level): A0 near top view, A1 near side view

As mentioned above, based on Gaussian program and the fuzzy symmetry method
[21], we can get all the MOs in MC-[18] and their representations ought to be all pure
as shown in Table 1. In Fig. 9, it shows the HOMO of MC-[18] molecule as regards
the TSR symmetry.

4 Symmetry of multi-twisted Möbius cyclacene molecule

Although the synthesis of Möbuis strip-like cyclic compounds was succeeded only
for twisted the linear precursor one time (180◦) so far, Möbuis molecules with twist-
ing many times (especially the Möbuis cyclacenes with two or three knots) [14] have
attracted more and more attention by molecular structure designers since the new
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Fig. 10 The diagram and
symmetry of Hückel-cylindrical
band

millennium. Previous research on the symmetry of Möbuis strip-like molecule is
mainly based on the point symmetry, which may have some contrast with the symme-
try characteristics from the view of topology. The reason may be mainly due to the
ignoring of the TSR symmetry. A symmetry group which contains the TSR and the
point group symmetries meanwhile, called the torus group.

For the molecules having the symmetry of torus group, the torus orthogonal cur-
vilinear coordinate system should be introduced. For example, MC-[18] has both the
TSR symmetry and the C2 point group symmetry; while M2C-[18] has the relevant
TSR symmetry and the D2 point group symmetry. For analyzing such kind of mol-
ecules, we need to start with investigating the point symmetry characteristics of the
multi-twisted Möbius strip band.

4.1 Symmetry of multi-twisted Möbius strip band

When the polyacene molecule as shown in Fig. 1 is glued between its right and left sides
directly, it will form the Hückel-cyclacene molecule HC-[18] as shown in Fig. 10. And
if twisted one time before glued, it will form the Möbius-cyclance molecule MC-[18].
It should be noted here that for the cyclacene molecule including n(0) benzene-rings
with n(t) times twisted Möbius molecule, we denote it as Mn(t)C-[n(0)]. Thus, the
multi-n(t)-twisted isomers can be denoted as Mn(t)C-[18].

Such geometric surface (in Fig. 10) ought to possess the symmetry of point group
D∞h, when lim n(0) → ∞(infinite):

Dn(0)h → D∞h = D∞ ⊗ Cs. (11)

The key character of geometry of this cylinder surface is its upper and lower bound-
ary circles, which are symmetric distributed about the base circle (the mid circle in
Fig. 10), exhibiting the Cs symmetry of the surface. The axis vertical to the base circle
and through the centre (O) is the rotation principal axis of the point group C∞. The
straight lines containing the diameter of base circle and vertical to the principal axis
are all two-fold rotation axes. These two-fold axes and the principal axis form the D∞
symmetry of two boundary circles of the side of the cylinder. Where the C∞ rotation
group is an infinite-order cyclic group, and the order of D∞ point group ought to be
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Fig. 11 The diagram and symmetry of Möbius-strip band. a Oblique view to the base circle. b Top view to
the base circle

twice of C∞ rotation group, but D∞ is not a cyclic group. The order of D∞h point
group is quadruple of that of C∞ rotation group, and D∞h is also not a cyclic group.

The Möbius strip band can be formed by cutting, twisting and gluing the cylinder
side once as shown in Fig. 11, and it only possesses the C2 symmetry of the point
group with the OX axis as the relevant two-fold axis.

It should be pointed out that the base circle of the produced Möbius strip-band is
the same as that of the Hückel-cylindrical band. The Hückel-cylindrical band includes
two boundary circles which separate the surface into the inner and outer two surfaces.
However, the Möbius strip-band includes only one boundary and one surface without
being separated, and this surface possesses only the symmetry of the point group C2.
However, based on the topology principle [16], the fundamental group of Möbuis strip
is an infinite continuous cyclic group and its border is made up of twice of the generator
of the common cyclic group. Such cyclic group may be characterized with the border
of Möbius strip-band (see Fig. 11a, b), and such cyclic group is a TSR transformation
group:

TSR(n(0)/1; j) = {TSR (L, 2γ, γ )} j ={TSR (L, 2 jγ, jγ ); 2 jγ ⊆ (0, 2π)}
(12)

where limγ → 0 is equivalent to lim n(0) → ∞. When j = π/γ , we have TSR(L,
2 jγ, jγ )= TSR(L, 2π, π), but it is not the identity transformation; only when j =
2π/γ , we have TSR(L, 2 jγ, jγ ) = TSR(L, 4π, 2π) = TSR(L, 2π, 2π), and it is the
identity transformation indeed. Such TSR transformation group is a cyclic group, and
its order will be the twice of the Cn(0) (or limn(0)→∞Cn(0) → C∞) rotation group.
The symmetry of such surface belongs to the torus group: C2(OX) ⊗ TSR(n(0)/1; j).
Where OX denotes the two-fold axis C2 being in OX direction. The order of such torus
group is quadruple of the Cn(0) rotation group, but is not a cyclic group. The key geo-
metrical character of Möbius strip-band is that it only has one border line.
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Fig. 12 The multi(n(t) = 2–6)-twisted Möbius-strip band, top view to base circle

As shown in Figs. 10 and 11, the base circles of Hückel- and Möbius-bands are the
same. For Hückel-band, all the straight lines which contain the diameter of base circle
are the 2-fold axes and the plane contain the whole base circle is a symmetry mirror.
For the Möbius-band, there is only one 2-fold axis, i.e. the OX axis. As for the OZ
axis which is vertical to the base circle, it is the C1 rotation axis for Hückel-band and
the C1 (no symmetry) axis for Möbius-band. Although the base circle still exists in
the Möbius-band, it is no longer a mirror and there is only one 2-fold axis through a
particular diameter of the base circle.

Similarly, we may analyze other multi-twisted Möbius-strip band. As shown in
Fig. 12, it shows the top view of the base circles with the twisted n(t) = 2–6. When
n(t) is odd integer, there are only one continuous surface and one curve (including
knots) border in the Möbius strip band. When n(t) is even integer, there are two discrete
surfaces separated by two boundary curves (including catenanes).

As for n(t) = 1, the Möbius strip band has been shown in Fig. 11 already, and is not
plotted in Fig. 12. All these Möbius strip bands with different n(t) have the same base
circles. The axis vertical to the base circle and through the centre (i.e. the OZ axis,
CZ) ought to be the n(t)-fold rotation axis, Cn(t). Based on the point group theory, if
there exists 2-fold rotation axis which is perpendicular to the Cn(t), there is the point
group Dn(t) in the system. Therefore, the Möbius strip bands with n(t) = 2–6 would
have the symmetry of the point groups D2, D3, D4, D5 and D6, respectively. As for
n(t) = 1, it can be considered that it has the symmetry of point group D1. However,
in this system the CZ is C1, and in fact there is only one 2-fold axis vertical to CZ. So,
it may be often called such system possessing the symmetry of point group C2, where
the C2 axis is not the CZ axis. It is obvious that in the Hückel band, the CZ axis would
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be a infinite cyclic rotation axis Cn(0) = C∞. If the related n(0) is finite, the Cn(t) axis
may not exist in the Möbius strip band, and it should be replaced by the C(n(0),n(t))

axis, resulting that the relevant point group Dn(t)would also be changed into the point
group D(n(0),n(t)), where the subscript (n(0), n(t)) means the greatest common divisor
of n(0) and n(t), moreover if n(0) is infinite, then (n(0), n(t)) = n(t).

In addition to the point group, Möbius strip still possesses an infinite cyclic group,
namely the TSR group:

TSR(n(0)/n(t); j) = {TSR (L, 2γ, n(t)γ ) j }
= {TSR (L, 2 jγ, jn(t)γ ) ; 2 jγ ⊆ (0, 2π)} (13)

where lim γ → 0 results lim n(0) → ∞. As j = π/γ , TSR(L, 2 jγ, jn(t)γ ) =
TSR(L, 2π, n(t)π) may be not an identity transformation. In fact, as n(t) is
even, the TSR(L, 2π, n(t)π) will be the identity one, while as n(t) is odd, the
TSR(L, 2π, n(t)π) will not be. So, only when j = 2π/γ, TSR(L, 2 jγ, jn(t)γ ) =
TSR(L, 2π, 2n(t)π) is so. For n(t) is even or odd, the symmetry character of Möbius
strip-band will be somewhat different. When Möbius strip-band with odd n(t), it will
only have one border (closed and knotted) curve which is invariable under the TSR.
And this infinite cyclic group will be made up of twice of the generator as that of
the base circle. When Möbius strip-band with even n(t), it will have two boundary
(catenate) curves and the relative infinite cyclic group will be made up of the same
order of the generator as that of the base circle.

There are two kinds of the group elements included in the point group Dn(t). The
first one is the Cn(t) rotation about the CZ axis, and it can commonly be denoted as some
TSR. The Cn(t) usually may interchange with the relevant TSR, Cn(t)TSR = TSRCn(t).
The other one is the 2-fold rotation C2 about the axis vertical to the Cn(t) axis. Such
C2 transformations often can not interchange with the relevant TSR.

4.2 Symmetry of multi-twisted Möbius strip cyclacene molecule

For the cyclacene including n(0) benzene-rings with n(t) times twisted Möbius mol-
ecule, as shown in Sect. 4.1, we denote it as Mn(t)C-[n(0)]. It is noteworthy that the
configuration of the SA atom set in MC-[18] molecule about the TSR in Fig. 3 is
similar to the border shape of the Möbius strip band with n(t) = 1 in Fig. 11b. It is
conceivable that if the 36 H atoms in Fig. 1 lay in both the up- and down- borders of the
corresponding rectangle, then they will be in the border of Möbius strip band when the
rectangle forms the Möbius strip band. As for the 72 C atoms, they can be distinguished
into two sets (Ca, Cb) and (Ca′, Cb′), respectively. If the 36 C atoms of the either set
mentioned above lay in the border, the similar configuration should also be obtained.
Such relationship between the SA atom set and the boundary curve associated with
the TSR is also existed in both of the Hückel- and multi-twisted Möbius-molecules.
Figure 13 shows the TSR SA atom sets of Mn(t)C-[24] molecule with n(t) = 1–6,
and that of HC-[24] molecule. Comparing with the relevant curved surface in Figs. 11
and 12, the TSR SA atom sets in Fig. 13 obviously are in consistency with that curved
surface bonder.
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Fig. 13 The TSR SA atom set of Mn(t)C-[24] (top view to base circle) and HC-[24] molecules (somewhat
deviate top view to base circle)

In order to show the atom position of these SA atom sets in these molecules clearly,
the space filling graph of such molecules are shown in Fig. 14. In the graph, the shal-
low and deep atoms denote the H and C atoms, respectively. Comparing the Figs. 13
and 14 (especially, the H atoms), the relativity should be very obvious.

For the ordinary Möbius strip band and Möbius strip-like molecule, the main dif-
ference between their TSR symmetry characters is that the TSR symmetry of the
former is an infinite cyclic group, while it is a finite one for the latter. The torus group
includes the point group and TSR group, the TSR group is finite or infinite will effect
the point group, too. On the other hand, for Hückel-band, the CZ axis is the infinite,
n (0) = ∞-fold rotation axis, and it possesses the symmetry of point group D∞h.

The n(t)-time twisted Möbius band will belong to the point group D(n(0),n(t)).
Because n(0) = ∞, we can obtain D(n(0),n(t)) = Dn(t). Even if the Hückel mole-

123



J Math Chem (2012) 50:2248–2271 2267

Fig. 14 The space filling graph of Mn(t)C-[24] and HC-[24] molecules (top view to base circle)

cule possesses the finite point group Dn(0)h symmetry, the point group of the relevant
n(t)-time twisted Möbius strip-like molecule, D(n(0),n(t)), may not equal to Dn(t). Only
if n(t) is the reducible factor of n(0), the relationship, D(n(0),n(t)) = Dn(t), will come
into existence. For example, for the M5C-[24] molecule, n(t) = 5 and n(0) = 24,
there is no common divisor between them (except 1), so it only has the D1 symmetry.
Though it seems that there is the symmetry of point group D5 seen from Figs. 14
and 15, in fact it is only an incomplete or fuzzy symmetry of D5 point group. How-
ever, the MC-[24], M2C-[24], M3C-[24], M4C-[24] and M6C-[24] molecules have
the symmetry of point groups D1(C2), D2, D3, D4 and D6, respectively. As for the
M4C-[18] molecule, the greatest common divisor between the n(t) = 4 and n(0)=18
is 2, we can know that it has the symmetry of point group D2.
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Fig. 15 The various SALC-AO
components in the near front
MOs of M2C-[18]
(at STO3G/HF)
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On the other hand, in relation to TSR group, the Eq. (13) is still true for Möbius
strip-like molecule, but both the n(0) and γ = π/n(0) are finite. This group includes
jm elements, where j = 0, 1, 2, . . . , jm − 1:

TSR(n(0)/n(t); j)={TSR (L, 2π/n (0) , πn (t)/n (0))} j [ j =0, 1,2, . . . , jm − 1]
(14)

When j = n(0), the group element will be TSR(L, 2π, n(t)π). If n(t) is even,
when j = n(0) = jm , the group element TSR(L, 2π, n(t)π) is an identical transfor-
mation, namely jm = n(0). As n(t) is odd, when j = n(0) = jm/2, the group element
TSR(L, 2π, n(t)π) will not be an identical transformation, except when j = 2n(0),
the group element TSR(L, 2π, 2n(t)π) can be an identical one, namely jm = 2n(0).
The behaviors are different for the Möbius strip-like molecule whether n(t) is even or
odd.

4.3 Symmetry of the MOs of multi-twisted Möbius strip cyclacene

For multi-twisted Möbius strip-like molecule, the relevant symmetry group is the
torus group, which includes two kinds of subgroups: the point group and the TSR
group. Such symmetry character will also appear in their MOs. Furthermore, the TSR
group is a cyclic group, and the irreducible representation and character of both point
group and TSR group can be analyzed and obtained by using the group theorem.
For the torus group, we can also analyze them by the group representation theorem.
We may analyze the MO of multi-twisted Möbius strip-like molecule from the repre-
sentation theorem of torus group. The method is similar to that we used for the MO
of MC-[18] in Sect. 3.2.2. For example, for Mn(t)C-n(0), we can obtain the various
SA-AO and SALC-AO sets based on the SA-atom set in relation to the molecular
torus group. The SALC-AOs which belong to the same irreducible representation can
be combined to form MOs further. Such constructed MOs belong to the pure repre-
sentation, but their SALC-AO included may be composed by various SA-AO sets, i.e.
each MO may include components of several SA-AO sets. The related method and
results of such investigation are similar to that of MC-[18] molecule. For example,
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Fig. 16 The view of HOMO of M2C-[18] (at STO3G/HF level). A0 Near top view, A1 near side view

for M2C-[18], its SALC-AO components are shown in Fig. 15. Such figure seems
somewhat similar to Fig. 8 for MC-[18] molecule.

The related HOMO is shown in Fig. 16. The similar analysis for other related
molecules is omitted.

5 Conclusion

In this paper, the cyclacene and its isomer are taken as examples to interpret how to
analyze the symmetry of the Möbius strip-like molecule, and we find out that there is
a new molecular symmetry group which is different from the usual point group. The
main conclusions are summarized as follows:

1. Similar to the screw rotation, there exists the TSR. TSR is the combination of the
rotation around of both the center and the circumference of the base circle. The
image of any source point after conducting the TSR will certainly be on a torus,
and the trajectory is a helix on the torus. All of such points their trajectories will
gather to form a whole torus and the corresponding symmetry transformations
will compose a group called the torus group. In the 3D space, a TSR is applied
to the object that has rotational symmetry in the direction along the base circle.
The torus screw rotation group TSR is a kind of torus group.

2. Torus orthogonal curvilinear coordinate is introduced to discuss the symmetry of
Möbius strip-like molecule. Its character, selection method and the relationship
with the Cartesian coordinates are introduced, briefly. For a point P(L, α, β),
under the operation of the TSR, the L coordinate value is invariable, while the α

and β values can be changed by applying certain rules. Such transformation does
not belong to the general point group.
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3. For Hückel molecule, HC-[n(0)], it has the Dn(0)h symmetry, which includes
a subgroup, n(0)-fold rotation cyclic group. Ordinarily, the cylinder orthogonal
curvilinear coordinate system can be introduced to study the Hückel molecule.
The symmetry adapted linear combinations atomic orbital (SALC-AO), in the
cylinder orthogonal curvilinear coordinates, may be composed by only one kind
of their components (either one of s-, pZ-, pN-, and pT-AO), and they can further
combine to form the MO. These MOs may belong to a pure irreducible repre-
sentation of the point group Dn(0)h, but the contained SALC-AOs can be various.
In the HC-[n(0)] molecule, the MOs near the frontier MO mainly include the
SALC-(pN-) AO component.

4. For Möbius strip-like molecule with twisting one time, MC-[n(0)], it has the
symmetry of 2n(0)-fold torus screw rotation group TSR(n(0)/1). From the view
of common point group symmetry, such molecule only possesses the symmetry
of point group C2, however, both the TSR group and the C2 point group would
be the subgroups of such molecular torus group:

Molecular torus group = {TSR(n(0)/1); C2}

The TSR is an Abelian cyclic group. The symmetry adapted linear combination
(SALC)-AO set about the molecular torus group may only include the s-AOs of
the same kind of atoms. However, for the p-AO, the torus orthogonal curvilin-
ear coordinates system would be introduced. The SALC-AO sets composed by
various AOs (s-, pα-, pβ- or pL-AO) may belong to the same irreducible represen-
tation. And these SALC-AO sets with the same irreducible representation may
further combine to form MOs. Vice versa, those MOs may include AOs from
different SALC-AO sets. In MC-[n(0)], the MOs near the frontier MO mainly
include the SALC-(p-)AO component. Here all the three components of p-AO
(pα-, pβ-, and pL-AO) ought to be included, while the pL-AO component will be
the somewhat larger and the s-AO component will be very tiny.

5. At last, the special symmetry of multi-twisted Möbuis-molecule is analyzed and
some important results are obtained. For the multi-n(t)-twisted Möbuis molecule,
if the corresponding Hückel-molecule has the symmetry of point group Dn(0)h,
then such n(t)-twisted Möbuis-molecule will possess the symmetry of torus group
which is composed by the subgroups of the point group D(n(0),n(t))h and the TSR
group TSR(n(0)/n(t)). Thus,

Molecular torus group = {TSR(n(0)/n(t)); D(n(0),n(t))h}

where the subscript symbol of the point group, (n(0), n(t)), is denoted the
maximal common divisor of n(0) and n(t). When n(t) is odd, the TSR group,
TSR(n(0)/n(t)), is a 2n(0)-fold cyclic group. When n(t) is even, the TSR group,
TSR(n(0)/n(t)), is an n(0)-fold cyclic group. The symmetry adapted (SA) atom
set about the torus group will be distribute alone the curves similar as the border-
line (including the knot or catenane) of the relative Möbuis strip. The SALC-AO
set about the molecular torus group may only include the s-AOs of the same
kind of atoms. However, for the p-AO, the torus orthogonal curvilinear coor-
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dinates must be introduced. The SALC-AOs may composed by various AOs
(s-, pα-,pβ- or pL-AO) belonging to the same irreducible representation, These
various SALC-AOs with the same irreducible representation may further combine
to form MOs. These MOs may belong to the various pure irreducible representa-
tions, respectively, but they may include AOs from different kind of SALC-AO
sets.

It should be pointed out that what reported here is the result from the preliminary
probe into the symmetry of Möbuis-molecule by using the torus group. Lots of prob-
lems need to be investigated further, the other-Möbuis molecules and non-Möbuis ones
(such as some DNA molecules) with torus group symmetry, the every possible forms
of the molecular torus group and the relevant general representation theorems, the
relationship between the molecular torus group and other torus defined in the mathe-
matical field, and the fuzzy or irregular torus group when the base circle replaced by
other closed curve, etc.
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